Comparison of data-driven methods for downscaling ensemble weather forecasts

نویسندگان

  • X. Liu
  • P. Coulibaly
  • N. Evora
چکیده

This study investigates dynamically different data-driven methods, specifically a statistical downscaling model (SDSM), a time lagged feedforward neural network (TLFN), and an evolutionary polynomial regression (EPR) technique for downscaling numerical weather ensemble forecasts generated by a medium range forecast (MRF) model. 5 Given the coarse resolution (about 200-km grid spacing) of the MRF model, an optimal use of the weather forecasts at the local or watershed scale, requires appropriate downscaling techniques. The selected methods are applied for downscaling ensemble daily precipitation and temperature series for the Chute-du-Diable basin located in northeastern Canada. The downscaling results show that the TLFN and EPR have 10 similar performance in downscaling ensemble daily precipitation as well as daily maximum and minimum temperature series whatever the season. Both the TLFN and EPR are more efficient downscaling techniques than SDSM for both the ensemble daily precipitation and temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Downscaling of seasonal soil moisture forecasts using satellite data

A new approach to downscaling soil moisture forecasts from the seasonal ensemble prediction forecasting system of the ECMWF (European Centre for Medium-Range Weather Forecasts) is presented in this study. Soil moisture forecasts from this system are rarely used nowadays, although they could provide valuable information. Weaknesses of the model soil scheme in forecasting soil water content and t...

متن کامل

Mixture EMOS model for calibrating ensemble forecasts of wind speed

Ensemble model output statistics (EMOS) is a statistical tool for post-processing forecast ensembles of weather variables obtained from multiple runs of numerical weather prediction models in order to produce calibrated predictive probability density functions. The EMOS predictive probability density function is given by a parametric distribution with parameters depending on the ensemble foreca...

متن کامل

Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route

During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desira...

متن کامل

The Floodrelief Internet-based Flood Forecasting Decision Support System

For operational flood forecasting and operational decision-makers, ready access to current and forecasted meteorological conditions is essential for initiating flood response measures and issuing flood warnings. Effective flood forecasting systems must provide reliable, accurate and timely forecasts for a range of catchments; from small rapidly responding urban areas, to large, more slowly resp...

متن کامل

A new method for robust route optimization in ensemble weather forecasts

This paper presents a new dynamic programming method for multi-objective route optimization of ships. The method, which is an extension of the known Dijkstra's algorithm, uses the concept of Pareto e ciency to handle multi-objective optimization and can be used with both deterministic and ensemble weather forecasts. The advantage of the presented method in combination with deterministic weather...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006